Exploring public engagement with missing person appeals on Twitter

Dr Reka Solymosi

January 29, 2020

About this time last year I received funding from the Manchester Statistical Society Campion Grant to carry out some research looking into appeals for informaion made about missing persons on Twitter.

The motivation behind this is that police agencies globally are seeing an increase in reports of people going missing. These people are often vulnerable, and their safe and early return can be a key factor in preventing them from coming to serious harm. One approach to quickly find missing people is to disseminate appeals for information using social media. In fact, police, and other agencies, make frequent use of social media (such as Twitter) to send out appeals for information.

The goal of this project was to better understand how police accounts tweet appeals for information about missing persons, and how the public engage with these tweets by sharing them.

To achieve this goal we analysed 1,008 Tweets made by Greater Manchester Police between the period of 2011 and 2018 in order to investigate what features of the tweet, the twitter account, and the missing person are associated with levels of retweeting.

In particular we wanted to look at different features associated with the tweet, the twitter accounts, and the missing person, and any associations with engagement by the public, measured as retweets.

Related materials:

Here I will highlight some of the most interesting findings.

Features of interest

First we identified features associated with public engagement that might influence engagement from a litearture review. We identified the following:

Table 1: Table 1: features in the literature
Element Feature
Features of the missing person Race/ ethnic appearance, Gender, Age
Features of the tweet Time and timeliness, Post length, Punctuation and hashtags, Templates, Sentiment, Tone, Useful information, Photo (presence and valence)
Features of the account Number of followers, Age of account, Tweeting activity, Trusted source

We then went through our sample of 1,008 Tweets that were appeals for information about missing persons taken from the 56 GMP Twitter accounts identified for this study, and coded for all of these elements (except age, we abandoned it as this was too messy really…!). Please see the preprint for details on conceptualisation and operationalisation of these variables. Also for the full set of results, as below I will highlight only two of the most interesting ones, the paper itself contains many more!

Two highlighted results

First we looked at the importance of photos, in particular if people engage differently with a custody image versus a regular everyday photo (Figure 1). We found that custory photos are retweeted less than regular photos. Using multiple photos does not seem to matter. The point estimate is the median, and the arms represent the interquartile range.

*Figure 1: Retweets for different image types by gender and ethnic appearance*

Figure 1: Figure 1: Retweets for different image types by gender and ethnic appearance

We also looked at the types of phrasing used in the Tweets, by coding these into different types of templates.

Here are he list of templates identified through qualitative coding, with an example of each:

Table 2: Table 2: types of templates present in Tweets by GMP about missing persons
Template No. of tweets Example
call 101 449 “*** [OTHER_841] [OTHER_7] [OTHER_204] *** Joshua [OTHER_57] 13 years old is missing from the [OTHER_224] area, if you have any information please call 101. https://t.co/h9S4kMbcmn
original phrasing 255 “Please take a look at this. [OTHER_519] [OTHER_353] [OTHER_217] Lingard: http://t.co/oMdYHMZr
… are concerned for.. 115 “Pt1 - [OTHER_23] are becoming increasingly concerned for the welfare of a 46-year-old man from [OTHER_264] [OTHER_1743] thought to be missing in Wigan”
#missing 83 “… grey cardigan, peach top, blue jeans peach pumps. [OTHER_121] sightings pls call [OTHER_86] on 101… pls RT #missing”
please RT 77 “PLEASE [COMPANY_29] [OTHER_668] [OTHER_669] [OTHER_670] [OTHER_671] [OTHER_672] [OTHER_668] [OTHER_674] [OTHER_675] [OTHER_26] [OTHER_677] 21/5/13 [HE/SHE] [OTHER_678] 14 http://t.co/EUmrRL4wEd
can you help 72 “Can you help us find this woman, [OTHER_446] Bleu, who has gone missing from the MRI? http://t.co/6ymS0h57Td
have you seen.. 72 “Have you seen 47-year-old [OTHER_1163] from Derbyshire? Hayley Poynton, 47, was last seen at around 10.55pm on [OTHER_330] 10 [OTHER_1167] 2018 at [OTHER_83] [OTHER_792] Hospital. https://t.co/wjSmnldtN4 https://t.co/q4H0m116aD
high risk 58 “*High [OTHER_7] Missing*: [OTHER_91] male, 1[NUMBER_374]s, [OTHER_1223] build, approx 6ft, [OTHER_10] short hair with quiff, wearing a black tracksuit 1/2”
**missing** 56 “*MISSING* [OTHER_2101] [OTHER_2104] 13yrs, Pendleton. Desc - white, 5’4", slim, blue eyes, shaven hair, possible shaven eyebrows. http://t.co/H9KuNoT1A6
link to info 40 “MISSING: [OTHER_1983] [OTHER_1984] Moore, 40. [HE/SHE] has links to the city center, wythenshawe and Stockport/Bramhall areas of Manchester. Please share. https://t.co/NEulhR3cYu
thanks 34 “Help us find [OTHER_1025] [OTHER_833] [OTHER_519] [OTHER_989] [OTHER_163] if seen dont approach ring 999 and quote [COMPANY_41] 379 070314. please [OTHER_210] Thanks”
… are appealing for.. 26 “Police are appealing for information to trace 2 sisters who are missing from home. Lana & [OTHER_428] [PERSON_103] were last seen in [OTHER_429] [OTHER_89] 22/07”
urgent appeal 12 “MISSING [OTHER_22] – [OTHER_492] O’Leary 42 years. [OTHER_1540] for [OTHER_492] who requires urgent medical attention. [OTHER_121] info phone 101, log 1347 26/08/17 https://t.co/jcy7I25Gtt

We compared the number of retweets between each template (Figure 2). The point estimate is the median, and the arms represent the interquartile range.

*Figure 2: Retweets for different templates*

Figure 2: Figure 2: Retweets for different templates


These are just two interesting insights gained from exploring these tweets. In the full paper we explore a range of features associated with the appeals for information about missing persons made on Twitter by greater Manchester police.

In doing so, we uncover how the police currently construct such appeals, and whether we can infer any structure in the practice. We find that there is some structure, but there is also variation in how these messages are crafted, as well as in other features such as the type and quality of photo used, the phrasing and punctuation used, and the perceived sentiment that results.

We further considered how engagement, measured as retweets varies between these differently structured tweets, and draw conclusions about what we think might be important to follow up.

In sum, with this paper we provide an insight into how appeals for information for missing people are shared by a major UK police force, and how the public react to these messages. By doing so we serve as a reference point for an issue that is internationally relevant, affecting police and other organisations worldwide, and hope to spark future work in the area, preferably prospective or experimental studies to establish causal relationships between the features identified and engagement.

Read the full paper here: https://osf.io/preprints/socarxiv/wugxs and do reach out if you have any thoughts/comments/feedback/questions/ideas for future research!